Caseless Ammunition Small Arms. The Good, The Bad, and The Ugly.

Presented by

Jim Schatz

during the

2012 NDIA Joint Armaments Conference Seattle, Washington

Purpose

- Discuss the common misperceptions and "perceived" merits of caseless ammunition for use in rapid-fire military small arms.
- Learn from past experiences in numerous US and foreign efforts to "crack the caseless ammunition nut".
- Escape the "10% Bridge Too Far" trap. (1)

Caveats

The contents and opinions expressed in this presentation are those of the presenter and are based on available information and actual hands on experience.

■ Applicable organizations were contacted for input. That input was considered and is included as received.

About the Presenter

- Life long student in modern small arms and ammunition technology.
- 35 years in the international small arms arena serving in numerous capacities from user and trainer to developer and provider.
- Caseless Technology PM and Contractor Trainer for the Caseless Ammunition G11 Rifle during the "successful" US Advanced Combat Rifle (ACR) program. 3+ years "living with" caseless ammo.

What is Small Arms Caseless Ammunition?

- Ammunition missing *THE* most important cartridge component the Exoskeleton Pressure Vessel (EPV)
- Having a fully combustible propellant body

"I can hold my gas and naughty bits together with little help!" (Cased Round)

"I got nothing!" (Caseless Round)

Not to be confused with...

"Semi-Caseless"

or

"Rocket"

a.k.a.

"Self-propelled"

Propellant located

within a hollow projectile

.41 Smith & Wesson Volcanic (USA - 1860)

Gyrojet (USA - 1965)

Caseless Ammo = Teddy

Caseless Ammo

"Teddy" on Vacation

Things are good...while all goes well

Beware of hidden dangers!

No stuffed animals were hurt during the compilation of this presentation

But if the foundation is weak,

bad
things
can
happen
(to Teddy!)

No stuffed animals were hurt during the compilation of this presentation

And things go bad...and fast!

OKAY, stuffed animals WERE hurt during the compilation of this presentation

Why should I covet my EPV?

■ Because it –

- Holds all your components together in one solid piece that is easily transportable and "discardable".
- 2. Is not readily or easily influenced by chamber heat, solvents or rough handling.
- 3. Can be pull versus push-through extracted.
- 4. Contains its own initial pressure irrespective to the weapon mechanism around it.
- 5. Prevents a degree of spark/flame propagation between rounds if struck by incoming fire.

It is a strong and the key foundation for complete "system" integrity, safety and reliability!

Brief Caseless Ammo History

■ 1346 - First "hand cannon" - fired "caseless" ammo

- 1570 1st "cartridge" (paper case) BIG NEWS!
- 1830 1st "metallic cartridge" *BIGGER NEWS!*
- WWII Germans experiment with caseless ammunition Formed Nitrocellulose (NC) employed to save "strategic materials" (brass)

Lesson Learned: Steel cases were used instead.

- Various commercial caseless firearms developed
- -Daisy VL .22 Caseless Ammunition Rifle (1967-1969)

ATFforced
"demise"

NC "pellet" ignited by compressed air. Novelty.

- Russian VAG-73 Semi-Caseless Ammo Pistol (1973)

High Capacity

48 round dual column (front, rear) magazine

7.62mm Semi-caseless VAG-73 rounds

- 1959-1975 US Ordnance Department
 - -Ground-breaking efforts to develop 5.56mm, 7.62mm and 25mm caseless ammunition (and weaponry) to reduce:
 - 1. Ammo weight (50%) and volume (30%)
 - 2. Critical case material reliance
 - -Involved AAI, AC Electronics, GE, GM, Hercules, Hughes Tool Co., others.
 - -Formed NC, HITP, even caseless flechette rounds were developed and tested.

■ 1970-1990 – German 4.92x34mm Caseless G11/US ACR, LSW, PDW developed at the cost of

100M's of \$ and DM's. HITP

90K rds fired through 20 prototype weapons in 18 months by US troops - all weapons "survived"

BUT only under close supervision!

Increased pH through "Salvo Launch" of multiple projectiles

- Various commercial caseless firearms (cont.)
 - Benelli Armi CB-M2 SMG

9x25mm AUPO "semi-caseless" round

(1980's)

NC "stacked" ammunition. Improved reliability.

- Austrian Voere VEC91 hunting rifle and 5.7mm and 6mm NC caseless ammunition (1994)

Electrically-fired to reduce lock-time. Improved accuracy.

■ 2000's – US LSAT LMG and Carbine under development in polymer CTA and Caseless Ammunition variants. Employs reformulated DNAG-developed HITP caseless propellant (of the German G11/ACR) in a cylindrical profile.

Reduction of combat load

"Failed" Caseless Attempts

(1) – Not fielded in an auto-loading weapon.

1869 through 2012

Principle of Operation HITP Caseless Round

COMPONENTS OF A CASELESS ROUND

DNAG 4.92x34mm HITP round pictured

Remnants - Unique "Battlefield Spores"

THE GOOD Weight Reduction

Demonstrated Reduction:

-Cartridge Weight > 50% vs. M855 (vs. 41% poly CTA) (2)

Reduced Bulk

-Bulk: 37% < M855 □□□□□ •••••

- * Smaller packaging, storage.
- * Less expensive to transport (\$1K-3K/pallet)
- * Square round cross section allows more stowed rounds in a given space.

7.62x51mm, 5.56x45mm, 4.92x34mm

Increased Combat Load

- On Soldier 510 rounds versus 240 rounds
- On Weapon 135+ rounds versus 30 rounds

7.35 kg = 16.2 lbs.

Increased Rate of Fire (Higher pH, BA Defeat) A Double Edged Sword!

■ Elimination of Extraction and Ejection steps (25% less) allows for higher rates of fire (> 2,200 rpm) BUT requires novel, high risk mechanisms with a poorly demonstrated down-range pH and body armor defeat benefits.

HITP Caseless Ammunition firing G11/ACR "Interior Operating Floating System" (IOFS) mechanism

Conventional Cased Ammunition Russian AN-94 Assault Rifle "Shifted Pulse" mechanism

"Hyper Burst" - Worth the complexity?

Use of "Non-strategic" materials to lower cost

Can caseless propellant, production and assembly procedures (mixing, molding, milling) compare with the cost of cased ammunition manufacturing?
Especially if compared to inexpensive polymer cases?

- Requires all new machinery and processes, which would make the cost of a caliber switch seem cheap by comparison!
- No cases to be recycled.

Caseless ammunition production machinery

Reduced Operator Cleaning

■ Caseless HITP propellant creates almost zero fouling BUT enough exists that can inhibit high-tolerance sealing component function.

- No brass to police up, control, dispose of.
 - -Firing "remnants" are however created and must be expelled during operation and represent unique battlefield "spores" left behind.

Reduced Fire Hazard

■ The absence of the EPV (case) reduces the risk of secondary missiles and eliminates hazardous case fragments as a result of fire.

Propellant body burns, booster pops, launches projectile @ 18" up. Lands within 10" of "launch site". No fragments.

However round to round propagation is still a serious concern.

THE BAD

Obturation a.k.a Chamber Sealing The caseless ammunition "bogeyman!"

It is very likely an insurmountable technical obstacle to successful military fielding.

3 Key Chamber Sealing Areas – All "sealed" by the Cased Round

Gas Jet cutting can be game over for the mechanism!

Cased Ammunition

THE BAD Chamber Sealing (cont.)

Cylinder in firing position

3 Key Chamber Sealing Areas – Only 1 "sealed" by the Caseless Round until Complete Ignition

1. 2-part Expanding Chamber

Seals chamber front, rear

3. Plastic "Shoot thru" Cap

Just one example of sealing methods illustrated here

Projectile Seals Bore after "Launch"

Caseless Ammunition

THE BAD Fragile Propellant Body

- Not for use in legacy weapon mechanisms.
- Cannot easily/effectively be pull-extracted.
- Fragments are difficult to clear from weapon!
- Rough handling must be avoided.

Can inhibit transport/clearing.

THE BAD Cook Off

■ No expendable cartridge case "heat sink" (@ 10%) to eject from the weapon

5.56x45mm, 4.92x34mm

■ 210 rounds – Maximum cook off rate from a single-chamber mechanism. Multiple-chamber mechanism required for high sustained rate of fire employment (LMG's, AR's).

THE BAD Miscellaneous

- Correct weapon function and cartridge ballistics fully dependent on propellant body weight and the presence of all propellant at ignition.
- Propellant charge variances (i.e. custom loads) difficult to make. No user hand-loading.
- Interoperability within NATO.
- Operator field sustainability is questionable.
- Regulatory controls (ATF and the Daisy VL) and cartridge case "micro-stamping".

Caseless Ammunition Failures

Unlike anything you have seen before!

Many are unique to Caseless Ammunition!

■ Remember why we love that case (EPV)?!

Broken propellants pieces make great field chow warmers though!

Class I Stoppage

Clearable by operator in less than 10 seconds

Class I Stoppage

Clearable by operator in less than 10 seconds

Class I Stoppage

Clearable by operator in less than 10

seconds

NOTE: Failures shown are weapon, ammo dependent.

Why pull-type extractors don't work on caseless rounds.38

Class I Stoppage

Clearable by operator in less than 10 seconds

Class I Stoppage

Clearable by operator in less than 10 seconds

Class II
Stoppage

Clearable by operator in less than 10 minutes

■Propellant pieces become a major problem in weapon function, chamber clearing.

Cause: Ammunition Failure

■Partial projo tip penetration of plastic cap can impede chamber clearing (rotary type).

Where are the fragments?

Class II Stoppage

Clearable by operator in less than 10 minutes

NOTE: Failures shown are weapon, ammo dependent.

42

Class III
Stoppage

Not clearable by operator.

THE END

"Blue Smoke" incident. Sealing failure of chamber. Gas jet destroys the weapons' breech. The weapon is inoperable (FUBAR).

Summary

- "10% Bridge Too Far" is the cartridge weight savings of 50% versus 40%(3) worth:
- -Unavoidable additional weapon complexity, weight⁽⁴⁾ and sealing challenges?
- -Unique ammunition failures/stoppages?
- -Complete retooling cost for caseless ammo production?
- -The demise of poor Teddy!
 - (3) Ref. LSAT Briefing, NDIA May 2010 Page 10, 12 (CL = 50%, CTA = 41%)
 - (4) Ref. LSAT Briefing, NDIA May 2010 Page 6 (LMG: CL 9.9 lbs., CTA 9.2 lbs)

Questions?

Contact Information
Jim Schatz
schtred@aol.com

Thank you for your time and interest!